3.3.80 \(\int \frac {\cos ^2(e+f x)}{(a+b \sec ^2(e+f x))^{3/2}} \, dx\) [280]

3.3.80.1 Optimal result
3.3.80.2 Mathematica [C] (warning: unable to verify)
3.3.80.3 Rubi [A] (verified)
3.3.80.4 Maple [B] (verified)
3.3.80.5 Fricas [B] (verification not implemented)
3.3.80.6 Sympy [F]
3.3.80.7 Maxima [F]
3.3.80.8 Giac [F]
3.3.80.9 Mupad [F(-1)]

3.3.80.1 Optimal result

Integrand size = 25, antiderivative size = 131 \[ \int \frac {\cos ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\frac {(a-3 b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 a^{5/2} f}+\frac {\cos (e+f x) \sin (e+f x)}{2 a f \sqrt {a+b+b \tan ^2(e+f x)}}+\frac {b (a+3 b) \tan (e+f x)}{2 a^2 (a+b) f \sqrt {a+b+b \tan ^2(e+f x)}} \]

output
1/2*(a-3*b)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/a^(5/2)/ 
f+1/2*cos(f*x+e)*sin(f*x+e)/a/f/(a+b+b*tan(f*x+e)^2)^(1/2)+1/2*b*(a+3*b)*t 
an(f*x+e)/a^2/(a+b)/f/(a+b+b*tan(f*x+e)^2)^(1/2)
 
3.3.80.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 15.39 (sec) , antiderivative size = 2059, normalized size of antiderivative = 15.72 \[ \int \frac {\cos ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\text {Result too large to show} \]

input
Integrate[Cos[e + f*x]^2/(a + b*Sec[e + f*x]^2)^(3/2),x]
 
output
(3*(a + b)*AppellF1[1/2, -2, 3/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/ 
(a + b)]*Cos[e + f*x]^6*Sin[e + f*x])/(2*f*Sqrt[a + 2*b + a*Cos[2*(e + f*x 
)]]*(a + b*Sec[e + f*x]^2)^(3/2)*(a + b - a*Sin[e + f*x]^2)*(3*(a + b)*App 
ellF1[1/2, -2, 3/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + (3* 
a*AppellF1[3/2, -2, 5/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] 
- 4*(a + b)*AppellF1[3/2, -1, 3/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2) 
/(a + b)])*Sin[e + f*x]^2)*((3*a*(a + b)*AppellF1[1/2, -2, 3/2, 3/2, Sin[e 
 + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]^5*Sin[e + f*x]^2)/(Sqr 
t[a + 2*b + a*Cos[2*(e + f*x)]]*(a + b - a*Sin[e + f*x]^2)^2*(3*(a + b)*Ap 
pellF1[1/2, -2, 3/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + (3 
*a*AppellF1[3/2, -2, 5/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] 
 - 4*(a + b)*AppellF1[3/2, -1, 3/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2 
)/(a + b)])*Sin[e + f*x]^2)) + (3*(a + b)*AppellF1[1/2, -2, 3/2, 3/2, Sin[ 
e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]^5)/(2*Sqrt[a + 2*b + 
a*Cos[2*(e + f*x)]]*(a + b - a*Sin[e + f*x]^2)*(3*(a + b)*AppellF1[1/2, -2 
, 3/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + (3*a*AppellF1[3/ 
2, -2, 5/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] - 4*(a + b)*A 
ppellF1[3/2, -1, 3/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)])*Si 
n[e + f*x]^2)) - (6*(a + b)*AppellF1[1/2, -2, 3/2, 3/2, Sin[e + f*x]^2, (a 
*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]^3*Sin[e + f*x]^2)/(Sqrt[a + 2*b ...
 
3.3.80.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.02, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4634, 316, 25, 402, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sec (e+f x)^2 \left (a+b \sec (e+f x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 4634

\(\displaystyle \frac {\int \frac {1}{\left (\tan ^2(e+f x)+1\right )^2 \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 316

\(\displaystyle \frac {\frac {\tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)+b}}-\frac {\int -\frac {2 b \tan ^2(e+f x)+a-b}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{2 a}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {2 b \tan ^2(e+f x)+a-b}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{2 a}+\frac {\tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\frac {\int \frac {(a-3 b) (a+b)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a (a+b)}+\frac {b (a+3 b) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{2 a}+\frac {\tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {(a-3 b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a}+\frac {b (a+3 b) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{2 a}+\frac {\tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {\frac {(a-3 b) \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{a}+\frac {b (a+3 b) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{2 a}+\frac {\tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\frac {(a-3 b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{a^{3/2}}+\frac {b (a+3 b) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{2 a}+\frac {\tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

input
Int[Cos[e + f*x]^2/(a + b*Sec[e + f*x]^2)^(3/2),x]
 
output
(Tan[e + f*x]/(2*a*(1 + Tan[e + f*x]^2)*Sqrt[a + b + b*Tan[e + f*x]^2]) + 
(((a - 3*b)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]]) 
/a^(3/2) + (b*(a + 3*b)*Tan[e + f*x])/(a*(a + b)*Sqrt[a + b + b*Tan[e + f* 
x]^2]))/(2*a))/f
 

3.3.80.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 316
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[1/(2*a*(p + 1)*(b*c - a*d))   Int[(a + b*x^2)^(p + 1)*(c + d*x 
^2)^q*Simp[b*c + 2*(p + 1)*(b*c - a*d) + d*b*(2*(p + q + 2) + 1)*x^2, x], x 
], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  ! 
( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, c, d, 2, 
 p, q, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4634
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_) 
)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff/f 
Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), 
x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ 
[m/2] && IntegerQ[n/2]
 
3.3.80.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(808\) vs. \(2(115)=230\).

Time = 4.13 (sec) , antiderivative size = 809, normalized size of antiderivative = 6.18

method result size
default \(\frac {\left (b +a \cos \left (f x +e \right )^{2}\right ) \left (\cos \left (f x +e \right )^{2} \sin \left (f x +e \right ) \sqrt {-a}\, a^{2}+\sqrt {-a}\, a b \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )+\cos \left (f x +e \right ) \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a^{2}-2 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a b \cos \left (f x +e \right )-3 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b^{2} \cos \left (f x +e \right )+\sqrt {-a}\, a b \sin \left (f x +e \right )+3 \sqrt {-a}\, b^{2} \sin \left (f x +e \right )+\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a^{2}-2 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a b -3 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b^{2}\right ) \sec \left (f x +e \right )^{3}}{2 f \left (a +b \right ) a^{2} \sqrt {-a}\, \left (a +b \sec \left (f x +e \right )^{2}\right )^{\frac {3}{2}}}\) \(809\)

input
int(cos(f*x+e)^2/(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/2/f/(a+b)/a^2/(-a)^(1/2)*(b+a*cos(f*x+e)^2)*(cos(f*x+e)^2*sin(f*x+e)*(-a 
)^(1/2)*a^2+(-a)^(1/2)*a*b*cos(f*x+e)^2*sin(f*x+e)+cos(f*x+e)*ln(4*(-a)^(1 
/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*(( 
b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*((b+a*cos(f*x+e) 
^2)/(1+cos(f*x+e))^2)^(1/2)*a^2-2*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+c 
os(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x 
+e))^2)^(1/2)-4*sin(f*x+e)*a)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)* 
a*b*cos(f*x+e)-3*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/ 
2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*s 
in(f*x+e)*a)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^2*cos(f*x+e)+(- 
a)^(1/2)*a*b*sin(f*x+e)+3*(-a)^(1/2)*b^2*sin(f*x+e)+((b+a*cos(f*x+e)^2)/(1 
+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2 
)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2 
)-4*sin(f*x+e)*a)*a^2-2*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e)) 
^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1 
/2)-4*sin(f*x+e)*a)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a*b-3*ln(4 
*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^ 
(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*((b+a*co 
s(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^2)/(a+b*sec(f*x+e)^2)^(3/2)*sec(f*x+ 
e)^3
 
3.3.80.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 289 vs. \(2 (115) = 230\).

Time = 0.63 (sec) , antiderivative size = 699, normalized size of antiderivative = 5.34 \[ \int \frac {\cos ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\left [\frac {{\left (a^{2} b - 2 \, a b^{2} - 3 \, b^{3} + {\left (a^{3} - 2 \, a^{2} b - 3 \, a b^{2}\right )} \cos \left (f x + e\right )^{2}\right )} \sqrt {-a} \log \left (128 \, a^{4} \cos \left (f x + e\right )^{8} - 256 \, {\left (a^{4} - a^{3} b\right )} \cos \left (f x + e\right )^{6} + 32 \, {\left (5 \, a^{4} - 14 \, a^{3} b + 5 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{4} + a^{4} - 28 \, a^{3} b + 70 \, a^{2} b^{2} - 28 \, a b^{3} + b^{4} - 32 \, {\left (a^{4} - 7 \, a^{3} b + 7 \, a^{2} b^{2} - a b^{3}\right )} \cos \left (f x + e\right )^{2} - 8 \, {\left (16 \, a^{3} \cos \left (f x + e\right )^{7} - 24 \, {\left (a^{3} - a^{2} b\right )} \cos \left (f x + e\right )^{5} + 2 \, {\left (5 \, a^{3} - 14 \, a^{2} b + 5 \, a b^{2}\right )} \cos \left (f x + e\right )^{3} - {\left (a^{3} - 7 \, a^{2} b + 7 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )\right ) + 8 \, {\left ({\left (a^{3} + a^{2} b\right )} \cos \left (f x + e\right )^{3} + {\left (a^{2} b + 3 \, a b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{16 \, {\left ({\left (a^{5} + a^{4} b\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{4} b + a^{3} b^{2}\right )} f\right )}}, -\frac {{\left (a^{2} b - 2 \, a b^{2} - 3 \, b^{3} + {\left (a^{3} - 2 \, a^{2} b - 3 \, a b^{2}\right )} \cos \left (f x + e\right )^{2}\right )} \sqrt {a} \arctan \left (\frac {{\left (8 \, a^{2} \cos \left (f x + e\right )^{5} - 8 \, {\left (a^{2} - a b\right )} \cos \left (f x + e\right )^{3} + {\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, {\left (2 \, a^{3} \cos \left (f x + e\right )^{4} - a^{2} b + a b^{2} - {\left (a^{3} - 3 \, a^{2} b\right )} \cos \left (f x + e\right )^{2}\right )} \sin \left (f x + e\right )}\right ) - 4 \, {\left ({\left (a^{3} + a^{2} b\right )} \cos \left (f x + e\right )^{3} + {\left (a^{2} b + 3 \, a b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{8 \, {\left ({\left (a^{5} + a^{4} b\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{4} b + a^{3} b^{2}\right )} f\right )}}\right ] \]

input
integrate(cos(f*x+e)^2/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
[1/16*((a^2*b - 2*a*b^2 - 3*b^3 + (a^3 - 2*a^2*b - 3*a*b^2)*cos(f*x + e)^2 
)*sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 
 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^ 
2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + 
e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a 
^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)* 
cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x 
 + e)) + 8*((a^3 + a^2*b)*cos(f*x + e)^3 + (a^2*b + 3*a*b^2)*cos(f*x + e)) 
*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/((a^5 + a^4*b)* 
f*cos(f*x + e)^2 + (a^4*b + a^3*b^2)*f), -1/8*((a^2*b - 2*a*b^2 - 3*b^3 + 
(a^3 - 2*a^2*b - 3*a*b^2)*cos(f*x + e)^2)*sqrt(a)*arctan(1/4*(8*a^2*cos(f* 
x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e) 
)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e) 
^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) - 4*(( 
a^3 + a^2*b)*cos(f*x + e)^3 + (a^2*b + 3*a*b^2)*cos(f*x + e))*sqrt((a*cos( 
f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/((a^5 + a^4*b)*f*cos(f*x + e 
)^2 + (a^4*b + a^3*b^2)*f)]
 
3.3.80.6 Sympy [F]

\[ \int \frac {\cos ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\cos ^{2}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(cos(f*x+e)**2/(a+b*sec(f*x+e)**2)**(3/2),x)
 
output
Integral(cos(e + f*x)**2/(a + b*sec(e + f*x)**2)**(3/2), x)
 
3.3.80.7 Maxima [F]

\[ \int \frac {\cos ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{2}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cos(f*x+e)^2/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
integrate(cos(f*x + e)^2/(b*sec(f*x + e)^2 + a)^(3/2), x)
 
3.3.80.8 Giac [F]

\[ \int \frac {\cos ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{2}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cos(f*x+e)^2/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
sage0*x
 
3.3.80.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2}{{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2}} \,d x \]

input
int(cos(e + f*x)^2/(a + b/cos(e + f*x)^2)^(3/2),x)
 
output
int(cos(e + f*x)^2/(a + b/cos(e + f*x)^2)^(3/2), x)